
LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 1 / 10

E32R28T&E32N28T

2.8inch MicroPython

Demo Instructions

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 2 / 10

CONTENTS

1. Software and hardware platform description 3

2. Pin allocation instructions ...3

3. Instructions for the example program ...5

3.1. Set up ESP32 MicroPython development environment5

3.2. Upload files .. 5

3.3. Example Program Usage Instructions ...9

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 3 / 10

1． Software and hardware platform description

Module: 2.8-inch ESP32-32E display module with 240x320 resolution and ILI9341

screen driver IC.

Module master: ESP32-WROOM-32E module, the highest main frequency 240MHz,

support 2.4G WIFI+ Bluetooth.

Thonny version: 4.1.6

ESP32 MicroPython firmware version: 1.23.0.

2． Pin allocation instructions

Figure 2.1 Rear view of 2.8-inch ESP32-32E display module

The main controller of the 2.8-inch ESP32 display module is ESP32-32E, and the

GPIO allocation for its onboard peripherals is shown in the table below:

ESP32-32E pin allocation instructions

On board
device

On board
device pins

ESP32-32E
connection pin description

LCD

TFT_CS IO15
LCD screen chip selection control signal,
low level effective

TFT_RS IO2
LCD screen command/data selection
control signal.High level: data, low level:
command

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 4 / 10

TFT_SCK IO14 LCD SPI bus clock signal

TFT_MOSI IO13 LCD SPI bus writes data signals

TFT_MISO IO12 LCD SPI bus reading data signal

TFT_RST EN
LCD screen reset control signal, low level
reset (shared reset pin with ESP32-32E
main control)

TFT_BL IO21
LCD screen backlight control signal (high
level lights up the backlight, low level turns
off the backlight)

RTP

TP_SCK IO25
Resistance touch screen SPI bus clock
signal

TP_DIN IO32
Resistance touch screen SPI bus writes
data signals

TP_DOUT IO39
Resistance touch screen SPI bus reading
data signal

TP_CS IO33
Resistance touch screen chip selection
control signal, low level effective

TP_IRQ IO36
Resistive touch screen touch interrupt
signal, when a touch is generated, input a
low level to the main control

LED

LED_RED IO22 Red LED light RGB tri color LED light,
with a common anode,
lit at low level and
turned off at high level.

LED_GREEN IO16 Green LED light

LED_BLUE IO17 Blue LED light

SDCARD

SD_CS IO5 SD card signal selection, low level effective

SD_MOSI IO23 SD card SPI bus write data signal

SD_SCK IO18 SD card SPI bus clock signal

SD_MISO IO19 SD card SPI bus read data signal

BATTERY BAT_ADC IO34
Battery voltage ADC value acquisition
signal (input)

Audio
Audio_ENABLE IO4

Audio enable signal, low-level enable,
high-level disable

Audio_DAC IO26 Audio signal DAC output signal

KEY BOOT_KEY IO0
Download mode selection button (press
and hold the button to power on, then
release it to enter download mode)

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 5 / 10

RESET_KEY EN
ESP32-23E reset button, low level reset
(shared with LCD screen reset)

Serial Port
RX0 RXD0 ESP32-32E serial port receiving signal

TX0 TXD0 ESP32-32E serial port sends signal

POWER TYPE-C_POWER /
Type-C power interface, connected to 5V
voltage.

Table 2.1 Pin allocation instructions for ESP32-32E onboard peripherals

3． Instructions for the example program

3.1. Set up ESP32 MicroPython development environment

For detailed instructions on setting up the

“MicroPython_development_environment_construction_for_ESP32”, please

refer to the document

3.2. Upload files

After the development environment is set up, the relevant files need to be

uploaded to the ESP32 device in order to run the testing program.

Before uploading the file, please familiarize yourself with the directory contents of

the MicroPython sample program. Open the "1-示例程序_Demo\MicroPython"

directory in the package, as shown in the following figure:

Figure 3.1 MicroPython Example Program Catalog

The contents of each folder are described as follows:

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 6 / 10

BMP: Stores BMP format images that sample programs need to use.

demos: Contains sample programs

firmware: Stores MicroPython firmware (needs to be burned when setting up

the development environment)

Font: Stores the Chinese and English character modulo data that the sample

program needs to use.

libraries: Stores MicroPython library files that sample programs need to use

After understanding the directory contents of the MicroPython sample program,

the next step is to upload the program file to the ESP32 device. The steps are as

follows:

A. Connect the ESP32 display module to the computer and power it on using a

USB cable.

B. Open the Thonny software and configure the MicroPython interpreter for

ESP32, as shown in the following figure:

(If already configured, this step can be omitted)

Figure 3.2 Selecting MicroPython interpreter

C. Click the toolbar button to connect the ESP32 device. If the following

prompt appears in the shell information bar, it indicates that the device connection

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 7 / 10

is successful.

Figure 3.3 Connecting ESP32 devices

D. Click the "View ->Files" button to open the file window (ignore this operation if

it is already open). Find the "1-示例程序_Demo\MicroPython" directory in the

package in the window, left click the mouse to select the target file in the

directory, and right-click on the standalone mouse to select "Upload to /" to

upload the target file. As shown in the following figure:

Please note that when uploading files, ESP32 cannot run any programs,

otherwise the upload will fail

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 8 / 10

Figure 3.4 Uploading Files to ESP32 Devices

E. Upload the files from the "BMP", "Font", and "libraries" directories to the

ESP32 device using the above method. The files in the 'demos' directory can

be transferred or not. As shown in the following figure:

Figure 3.5 Completed file upload

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 9 / 10

3.3. Example Program Usage Instructions

The sample program is located in the "1-示例程序_Demo\MicroPython\demos"

directory of the package, as shown in the following: figure:

Figure 3.6 Example Program

The sample program can be uploaded to an ESP32 device to open and run, or it

can be opened and run on a local computer. If you need to power on the ESP32

display module to run automatically, you need to change the sample program

name to "main. py" and upload it to the ESP32 display module.

In the Python software, open the target sample program, click the menu bar

button, and you can run it. If the operation fails, the ESP32 device needs to be

reconnected.

The introduction of each example program is as follows:

BMP_test.py

This example program relies on the ILI9341.py library to display images in

BMP format

font_test.py

This example program relies on the ILI9341.py library to display Chinese and

English characters of various sizes. The font modeling data needs to be saved in

the font file according to the relevant format. For instructions on character

casting, please refer to the following website:

http://www.lcdwiki.com/Chinese_and_English_display_modulo_settings

http://www.lcdwiki.com/Chinese_and_English_display_modulo_settings

LCDWIKI E32R28T&E32N28T MicroPython Demo Instructions CR2024-MI2870

www.lcdwiki.com 10 / 10

graphical_test.py

This example program relies on the ILI9341.py library to display graphics

such as points, lines, rectangles, rounded rectangles, triangles, circles, ellipses,

etc. for drawing and filling, as well as setting display orientation.

Read_ID_GRAM.py

This example program relies on the ILI9341.py library to display LCD ID and

RGAM color value readings.

RGB_LED.py

This example hardware requires the use of RGB tri color lights to display the

on/off and brightness adjustment of the RGB tri color lights.

Simple_test.py

This example does not rely on any software libraries and displays simple

screen scrolling content.

Touch_Calibrate.py

This example relies on the ILI9341.py library and the touch.exe library,

displaying the calibration of a resistive touch screen. Follow the prompts

displayed on the screen. After calibration is completed, the calibration

parameters are output through the serial port and copied to the initialization of

the sample program. Please note that the touch screen should be calibrated

according to the display direction. The display direction in this program can be

modified, as shown in the following figure:

Figure 3.7 Modifying the Touch Calibration Display Direction

Touch_Pen.py

This example relies on the ILI9341.py library and the touch.exe library,

displaying the operation of drawing dots and lines on the touch screen.

	1．Software and hardware platform description
	Module: 2.8-inch ESP32-32E display module with 240
	Module master: ESP32-WROOM-32E module, the highest
	Thonny version: 4.1.6
	ESP32 MicroPython firmware version: 1.23.0.
	2．Pin allocation instructions
	3．Instructions for the example program
	3.1. Set up ESP32 MicroPython development environm
	 For detailed instructions on setting up the “M
	3.2. Upload files
	After the development environment is set up, the r
	Before uploading the file, please familiarize your
	Figure 3.1 MicroPython Example Program Catalog
	The contents of each folder are described as follo
	BMP: Stores BMP format images that sample programs
	demos: Contains sample programs
	firmware: Stores MicroPython firmware (needs to be
	Font: Stores the Chinese and English character mod
	libraries: Stores MicroPython library files that s
	After understanding the directory contents of the
	A. Connect the ESP32 display module to the compute
	B. Open the Thonny software and configure the Micr
	(If already configured, this step can be omitted)
	Figure 3.2 Selecting MicroPython interpreter
	C.Click the toolbar button to connect the ESP32 de
	Figure 3.3 Connecting ESP32 devices
	D.Click the "View ->Files" button to open the file w
	it is already open). Find the "1-示例程序_Demo\MicroPy
	package in the window, left click the mouse to sel
	directory, and right-click on the standalone mouse
	upload the target file. As shown in the following
	Please note that when uploading files, ESP32 canno
	Figure 3.4 Uploading Files to ESP32 Devices
	E.Upload the files from the "BMP", "Font", and "libr
	ESP32 device using the above method. The files in
	be transferred or not. As shown in the following f
	Figure 3.5 Completed file upload
	3.3. Example Program Usage Instructions

